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This paper presents a setup of turbulence mechanics for averaged description of turbulence, founded on laws
of momentum, moment of momentum, and energy, complemented by common rheological principles for
formulating constitutive relations between generalized forces and generalized velocities of the description. A
kinematical-geometrical principle is adopted to determine internal rotating degrees of freedom of turbulent
media generated by the eddy structure of turbulent flow fields. The connection between the formulated me-
chanics and some models(asK-« model), widely used in practical engineering flow calculations, is established.
As an example, the formulated mechanics is applied to describe some classical flow patterns.
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I. INTRODUCTION

Turbulence mechanics is a theory of turbulence formu-
lated in terms of average fields and founded on conservative
laws of momentum, moment of momentum, and energy. The
balance equations, expressing these laws, are closed by ap-
plying common rheological principles for formulating con-
stitutive relations expressing generalized forces of the de-
scription through the corresponding generalized velocities
and by adopting some specific assumptions which may vary
on considerations such as physics encompassed in the flow,
the level of accuracy, and so on.

The basic question to answer in formulating any mechani-
cal description of turbulence lies in determination of degrees
of freedom of turbulent motion. Starting from Richardson’s
turbulence understanding[1] with complementary remarks
by Kolmogoroff [2] (together referred to as the RK concep-
tion) it is easy to conclude the independence of internal ro-
tating degrees of freedom in turbulent medium(formed as
the summary effect of rotation of hierarchy of eddies of dif-
ferent scales with a cascading mechanism for their genera-
tion) from the degrees of freedom of its translatory motion
described in terms of average velocity field. Indeed, large-
scale eddies in the hierarchy draw their energy from average
flow and average angular velocity of their rotation deter-
mined by vorticity of the average velocity field, while the
small-scale eddies are not oriented, i.e., average velocity of
their rotation is zero. It is clear that in this situation the mean
angular velocity of eddy rotations over all scales cannot be
determined by the vorticity of the average velocity field un-
ambiguously and must be treated as independent of the av-
erage velocity.(This corollary of RK conception was not
noticed by Richardson and Kolmogoroff themselves.) As a
consequence, the law of moment of momentum should form
an indispensable component of any setup of mechanical de-
scription of turbulence.

The independence of rotating and translatory degrees of
freedom of turbulent motion was first broached by Mattioli
[3]. Mattioli’s idea was vivified in 1970s as indicating to a
possible field of applications of moment hydrodynamics
[4–9]. Concrete attempts in this direction[10–12] were made
by ascribing micromorphic properties to turbulent media ap-
pearing beyond the scope of classical field theories. Due to

the latter, the formulated idea as well as the idea of Mattioli
did not live up to expectations.

Nikolaevski[13] attempted to revive those ideas by asso-
ciating internal rotating degrees of freedom in turbulent me-
dia with volume(coarse grain) averaging. Although this ap-
proach expresses the rotational degrees of freedom in a
turbulent medium in terms of conventional characteristics of
turbulent flow field, it binds the nontriviality of internal mo-
ments to the finiteness of the linear scale of the differential
volume. This statement ascribes a subjective sense to the
internal moments in turbulent media and differs from the
conventional understanding of differential volume as a vol-
ume of infinitesimally small linear scale.

The essentiality of the internal rotating degrees of free-
dom of turbulent motion and the absence of their satisfactory
determination led the author to a kinematical-geometrical
principle of determination of characteristics of internal rota-
tion in turbulent media[14,15]. Indisputable advantage of
the proposed approach(discussed in detail in Secs. II and III
stands in the connectedness of the internal rotating degrees
of freedom with local measurable flow field parameters, turn-
ing the statements of the theory verifiable. Concerning the
latter, the proposed theory differs essentially from the ones
used in Refs.[10–12] and finds the need to vitalize the ideas
of the 1960s which have been forgotten to a large extent and
are not actively pursued in most of today’s turbulence stud-
ies.

The closure problem for the formulated turbulence me-
chanics (Sec. IV) is solved within the common rheology
used in the mechanics of continuums. It is shown that spe-
cific solutions of the closure problem by adopting ideas ofK,
K-«, andK-v models, widely used in the majority of appli-
cations, open the door to their significant generalization. As
an example, in Sec. V the formulated mechanics is applied to
the description of some classical flow patterns.

II. THE SETUP OF MECHANICAL DESCRIPTION OF
TURBULENCE: EQUATIONS OF BALANCE

We start the setup of turbulence mechanics from the defi-
nition of density of the internal moment of momentum per
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unit mass of turbulent flow field(henceforth the internal mo-
ment of momentum) in the form

M = kv8 3 Rl. s1d

In Eq. (1) and thereafter the brackets denote statistical aver-
aging(or an arbitrary averaging, satisfying the Reynolds av-
eraging rules); v8=v−kvl denotes the fluctuation(residual)
constituent of the flow velocityv; andR=]e/]su]e/]su−2, in
which e=v8 /v8 and s is length of the arc ofv8 streamline,
which denotes the curvature radius ofv8 streamline(Fig. 1).

Let us note thatR, contained in definition(1), can be
extracted from the experimental data by using technique to
measure Lagrangian velocities of tracer particles in turbulent
flow [16] and from the data of direct numerical simulations
[17]. This comment attributesM with measurability and all
corollaries following from the definition ofM , given by Eq.
(1), with testability.

We also point out the following.
(i) M is defined for each point of the flow field and

forms a continuum.
(ii ) M (as a quantity determined on characteristics of

fluctuating constituents of velocity field) is defined as inde-
pendent of the average velocitykvl.

(iii ) M is defined as a statistical characteristic of the
motion field and cannot be interpreted(due to the random-
ness ofR) as a moment with respect to any fixed moment
center (in this senseM is similar to the spin in quantum
mechanics).

(iv) Definition (1) is not related to the microproperties of
the medium.

(v) In general

M Þ 0 s2d

fthe property of turbulent medium, expressed by the condi-
tion s2d, is called henceforth rotational anisotropy. It declares
the existence of a preferred orientation of eddy rotations in
turbulent mediumg.

(vi) The description of turbulent motions satisfying the
condition (2) must be subjected to the laws of momentum

and moment of momentum.
Let us list some other properties of turbulent continuum

which follow from Eqs.(1) and (2).
(vii ) The definition(1) suggests the definition of a kine-

matical characteristic of flow fieldV corresponding toM , as

V =K v8 3 R

R2 L . s3d

(viii ) The density of turbulence energy per unit mass
(henceforth the turbulence energy) Kt= 1

2kv82l decomposes
into the sum of two constituents,

K1
t = 1

2M · V

and

K2
t = 1

2kM 8 · V8l,

where

M 8 = v8 3 R − M

and

V8 =
v8 3 R

R2 − V,

interpreted as the densities of energies of two-dimensional
and of three-dimensional constituents of turbulence.fAc-
cording to RK conception the energiesK1

t and K2
t can be

interpreted as energies of relatively large-scalesorientedd and
relatively small-scalesnonorientedd constituents of turbu-
lence. To avoid confusion with applying the terms “small-
scale” and “large-scale” turbulence, we cease using them if
eitherKt=K1

t or Kt=K2
t g.

(ix) M and V define the tensor of effective moment of
inertia J for each flow field point, determined by

M = J · V.

WhenJ is isotropicsJ=J·1̂, where1̂ is the unit tensord it
defines the parameterl =ÎJ with the dimension of length
for every flow field point.

Here we point to the difference in physics of introduced
V, defined by Eq.(3), and vorticity v, defined byv==
3 kvl /2. If v describes the angular velocity of rotation of a
medium particle in differential volumedV surrounding the
moment center and is determined by the average velocity
field, thenV is determined as the average characteristic of
fluctuating(residual) constituent of the velocity field. It ex-
presses the average angular velocity of rotation of a medium
particle indV with respect to the momentary centers of cur-
vature ofv8 streamlines. QuantitiesV andv, though differ-
ent in their physical sense, have coinciding dimensions and
may appear to have equal values. Definitions(1) and (3)
disprove the idea according to which the independence of
characteristics of internal rotation in turbulent media should
follow only from averaging over some volume[13] since
volume averaging and differentiation need not commute, i.e.,
may lead tok=3vlÞ=3 kvl.

FIG. 1. The definition ofM (1) at a fixed point determined by
point vector r : unlike the conventional understanding of internal
moments, defined as moments with respect to a fixed point inside
differential volumedV associated withr , momentM at r defines as
the average moment with respect to random centers of curvature
(determined byR) outside the differential volumedV.
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In addition to (i)–(ix), the definition (1) prescribes, to-
gether with Navier-Stokes equation and averaging rules, an
algorithm for deriving the balance equations for momentum,
moment of momentumsM d, and energyK2

t , leading also to
specific expressions of their terms. These equations follow as
the averaged Navier-Stokes equation, as the averaged equa-
tion formed by multiplying the equation forv8 (deduced as
the difference between the Navier-Stokes equation and the
averaged Navier-Stokes equation) from the right vectorially
by R, and as the difference of energy equations forKt and
K1

t .
Below are the derived equations of balance:

r
D

Dt
u = hsi j ,jj + rF, s4d

r
D

Dt
M = hmkj,jj − s + rm, s5d

r
D

Dt
K2

t = = ·h2
t − c + C + B + rq. s6d

In Eqs.(4)–(6), in addition to the notations explained above,
u;kvl; r is the medium density(assumed to be constant);
D /Dt=] /]t+u ·=; F=kfl, in which f denotes the density(per
unit mass) of the nonaveraged body force acting on medium;
si j and mkj denote the components of the stress tensor and
the moment stress tensor, describing the diffusive transport
of momentum and moment of momentum in a medium;s
=hekijsi jj, whereekij are the components of the Levi-Civitta
tensor, denotes the dual vector of the antisymmetric constitu-
ent of the stress tensor;m denotes the density(per unit mass)
of body moment acting on a medium;h2

t denotes the diffu-
sive flux vector for energyK2

t ; c describes the molecular
dissipation of energyK2

t ; C denotes the scattering function
of energiesu2/2 andK1

t into energyK2
t ; B denotes the term

describing an additional mechanism of interaction between
K1

t and K2
t differing from the one described byC; and q

denotes the term which describes internal source ofK2
t . In

Eqs.(4)–(6) and henceforth, the index after comma denotes
differentiation by the respective space coordinate, while the
notations in braces denote the component representation of a
tensor or vector quantity, wherein equivalent notation, arbi-
trary tensor or vector quantity; {components of this quan-
tity}, is used.

Consider now the casekRl=0. In this case the derivation
of Eqs.(4)–(6) leads us to the following expressions forsi j ,
s, mkj, m, h2

t , c, C, B, and q through characteristics of
nonaveraged flow field:

si j = ksi j
ml + si j

t ,

where

si j
t = − rkv j8vi8l s7d

are components of the turbulent stress tensor andsi j
m=

−pdi j +2mmvsi,jd [p denotes thermodynamic pressure,di j are
components of unit tensor,mm is coefficient of molecular

viscosity, andvsi,jd=
1
2svi,j +v j ,id] denote components of the

molecular stress tensor;

s = − rhekiskv j8vi8Rs,jlj;

mkj = − rkv j8Mk8l;

m=m f +m1+m2, in which

m f = kf8 3 Rl

(f8= f −F denotes the fluctuating constituent off field),

m1 =Kv8 3
]

] t
RL , s8d

and

m2 = hekisskvi8ujRs,jl + kv j8Rslui,jdj; s9d

h2
t = ht − h1

t

in which

ht = h− rkv j8K
v8l + ksi j

m8vi8lj

(whereKv8=v82/2) and

h1
t = hmkjVkj;

c = ksi j
m8vi,j8 l;

B = − rm2 · V;

C = o
a=1

4

FaVa, s10d

in which Fa and Va denote the generalized forces and ve-
locities of the description, defined as

Fa = hssi j d
t ,s,mij ,− rm1j

and

Va = husi,jd,V − v,Vi,j,Vj,

wheressi j d
t =ssi j

t +s ji
t d /2 is the symmetric part of the turbu-

lent stress tensor; and

q = ksf8 3 Rd8 · V8l.

Let us list some remarks concerning the situation de-
scribed by Eq.(4)–(6).

(i) No more assumptions besides the listed one in the
section preceding Eqs.(4)–(6) are adopted in the deduction
process.

(ii ) The mechanics of turbulence based on Eqs.(4)–(6)
does not reject classical theories and models(for instance,K
model,K-« model, andK-v model), founded on the balance
equation(4) and on the equation for full turbulence energy
Kt, following from Eq. (6) for rotationally isotropic turbu-
lence, but complements them.

FORMULATION OF TURBULENCE MECHANICS PHYSICAL REVIEW E69, 056317(2004)

056317-3



(iii ) The derivation of Eqs.(4)–(6) exhibits not only spe-
cific expressions for the terms of the equations but also the
structure of the generalized forces and generalized
velocities—the base of formulation of constitutive relations
(Sec. III).

(iv) The mechanics based on Eqs.(4)–(6) declares asym-
metry of the turbulent stress tensor. In a coordinate system
associated with each flow field pointsxid and with an origin
placed at a random point with the coordinatesxi +Ri, for s
we have

s = − rhekijkvi8v j8lj.

According to definition ofM , s is interpreted as the moment
acting on the internal rotationfin the sense determined by
Eq. s1dg and causing an increase or a decrease in the moment
of momentumM . It realizes the interaction between theu
andM fields.

(v) Only the constituentm f of the body momentm is
associated with external body forces. Constituents of the
body momentm1 and m2, defined in Eqs.(8) and (9), are
caused by the cascading scatter of moment of momentumM
and by the mean flow modified eddy structure.

(vi) The decomposition of the total turbulence energy
within the turbulence mechanics, based on Eqs.(4)–(6) into
two sublevels is substantial, owing to the difference in the
character of the energy interaction processes of energiesK1

t

andK2
t with energyu2/2. As opposed to energyK2

t , energy
K1

t can transform into the energyu2/2. This effect, known as
“negative viscosity,” follows naturally from the adopted as-
sumptions without any transgression against physical reason-
ability. The situation realizes whens ·vù0.

III. CLOSURE

Closure of the derived balance equations formulates in
two steps.

The first step stands in formulation of constitutive rela-
tions. In accordance with the common rheology we assume
that the generalized forces of a description depend linearly
on those generalized velocities on which they act. Within this
statement we have

ssi j d = − Pdi j + 2musi,jd, s11d

s = 4gsV − vd, s12d

mij = q0Vk,kdi j + q1Vi,j + q2V j ,i , s13d

and

rm1 = − 4kV. s14d

In Eqs. (11)–(14) P=kpl+ 2
3Kt; m, g, q0, q1, q2, andk are

coefficients, characterizing the medium properties(m=mm

+mt,wheremt denotes coefficient of turbulent shear viscosity;
g denotes the friction coefficient in relative rotation, i.e., if
VÞv; q0, q1, andq2 describe diffusion ofM ; k describes
decay ofM due to the cascading scatter of moment of mo-
mentum in turbulent medium). All coefficients, included in
Eqs.(11)–(14), can be, at least in principle, determined from

direct measurements, based on Eqs.(11)–(14), or by compar-
ing results of calculations with the corresponding experimen-
tal data. The constitutive relations(11)–(13) are familiar to
the moment hydrodynamics[4–9], while the relation(14)
expresses a property specific to the turbulent media.

Postulating inequality

C ù 0,

for m, g, q0, q1, q2, andk we have from Eq.(10)

m,g,k,q0 + 2
3sq1 + q2d, q1 + q2,q1 − q2 ù 0.

Finally, representing expression(8) for m2 in the form [15]

m2 = Js=ud · V s15d

(which includes the assumption about approximate linearity
of u field within the space scales determined byR), after
replacing in Eqs.(4) and (5) the quantities appearing on the
left side of Eqs.(11)–(15) by their expressions on the right
side of Eqs.(11)–(15), we have

r
D

Dt
u = − =p + hsmusi,jdd,jj + = 3 gs2V − = 3 ud + rF,

s16d

r
D

Dt
JV = =fq0s= · Vdg + hsq1Vi,jd,jj + hsq2V j ,id,jj

− 2gs2V − = 3 ud − 4kV + rJs=ud · V + rm f .

s17d

The assumptions listed in the paragraph preceding Eqs.
(4)–(6), constitutive relations(11)–(14), and the assumption
about approximate linearity of theu field within the space
scales determined byR, leading to Eqs.(16) and (17), form
the axiomatic base of the formulated turbulence mechanics.

The second step of solving the closure problem stands in
specification ofm, g, k, q0, q1, q2, andJ. In the following
we consider three sets of specifications.

a. Standard formulation of Theory of Rotationally An-
isotropic Turbulence(RAT theory). Within RAT theorym, g,
k, q0, q1, q2, and J are considered as depending only on
integral parameters(such as Reynolds number) of flow pat-
tern. In this case Eqs.(16) and (17) simplify to the forms

r
D

Dt
u = − =P + mDu + g= 3 s2V − = 3 ud + rF,

s18d

rJ
D

Dt
V = sq0 + q2d== · V + q1DV − 2gs2V − = 3 ud

− 4kV + rJs=ud · V + rm f . s19d

Equationss18d and s19d differ from the equations used in
Refs. f10–12g by specification of all terms through charac-
teristics of nonaveraged flow field as well as by additional
terms −4kV and rJs=ud ·V on the right side of Eq.s19d.
Term −4kV describes the effect of scattering ofM due to
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the cascading process and termrJs=ud ·V plays an impor-
tant role in establishing correspondence between the derived
motion equations and classical equations. There exist two
ways to achieve this correspondence. Consider the situation
whereF=0 andm f =0. The first way realizes forg=0, i.e., if
there is no friction in relative rotationfsee Eq.s12dg. In this
case Eq.s19d declares thatV, equal to zero at the initial time
instant, stay equal to zero for every following time instant.
The second way realizes forV=v sthere is no relative rota-
tion in a mediumd, k=0 sthere is no cascading scatter ofM d,
andq1=Jm. For the latter case Eq.s19d reduces to the equa-
tion for v, following from Eq. s18d.

b. RAT/K models. These models link RAT theory to
K models. Formulation of RAT/K models is based on ex-
pression ofmt andc asmt=c1r,2

ÎK2
t andc=c2rK2

t3/2/,2 (,2
denotes characteristic length scale of turbulence constituents
described byK2

t ) and on solving the problem of determina-
tion of h2

t in a form reducing for the rotationally isotropic
turbulence to the expressionh2

t =k=K2
t with k=c3,2

ÎK2
t (c1,

c2, andc3 denote dimensionless constants). Within RAT/K
models Eq.(6) for K2

t becomes an essential component of the
setup of turbulent motion description. For rotationally isotro-
pic turbulence a RAT/K model reduces to a correspondingK
model. Dependent on specification ofK model used for for-
mulating the corresponding RAT/K model and on specifica-
tion of m, g, k, q0, q1, q2, J, andh2

t , different versions of
RAT/K models can be formulated.

The energy equation forK1
t is equivalent to the equation

of moment of momentum, therefore the difference in terms
of the energy treatment RAT theory andK models can be
formulated as follows: ifK models consider total turbulence
energyKt with turbulence considered to be rotationally iso-
tropic, then RAT theory considers only a part of the total
turbulence energy associated with the two-dimensional tur-
bulence constituent, caused by the rotational anisotropy.

c. RAT/K-« models. These models link RAT theory
andK-« models of turbulence(in our notations«=c). Within
RAT/K–« modelsc determines from an additional equation
for c [18]. As in the case of formulation of RAT/K models,
different versions ofK-« models can be used to get different
versions of RAT/K-« models. For rotationally isotropic tur-
bulence RAT/K-« models reduce to the respectiveK-« mod-
els used for solving the closure problem.

d. RAT/K-v models. These models link RAT theory
and K-v models of turbulence[19] where the notionv is
used to denote the turbulent frequency. The simplest formu-
lation of RAT/K-v model definesv as, /ÎK2

t , leading to the
following expressions formt, c, and k: mt=c1rtK2

t , c
=c2rK2

t /t, andk=c3rtK2
t wheret=v−1.

Besides the formulated two steps of solving the closure
problem for Eqs.(4)–(6) the termsF, m f, and q in Eqs.
(4)–(6) must be also specified dependent on the nature of
external force fieldf.

IV. EXAMPLE: VELOCITY PROFILES OF ONE-
DIMENSIONAL FLOWS IN PLANE CHANNEL, ROUND

TUBE, AND BETWEEN ROTATING CYLINDERS

Let us consider the flows in plane channel, round tube,
and between rotating cylinders within the standard formula-
tion of RAT theory.

Applying Cartesian system of coordinatessx,y,zd in case
of channel flow and cylindrical system of coordinates
sr ,w ,zd in case of flow in tube and between rotating cylin-
ders, the velocity field is determined as follows:u
=(0,0,usx,td) for the channel flow,u=(0,0,usr ,td) for the
tube flow, andu=(0,usr ,td ,0) for the flow between rotating
cylinders. In case of absent external force field equation set
(18) and (19) simplifies to the form

r
]

] t
u = − =P + mDu + g= 3 s2V − = 3 ud, s20d

rJ
]

] t
V = q1DV − 2gs2V − = 3 ud − 4kV. s21d

Integration of Eqs.(20) and (21) for Poiseuille flows in
plane channel and in round tube leads to the following ex-
pressions foru/us0d:

u

us0d
= 1 −

1

2mefus0d
U ] P

] z
UH2j2 − C

coshsHj/ld
coshsH/ld

s22d

and

u

us0d
= 1 −

1

4mefus0d
U ] P

] z
Uro

2j2 − C
I0sr0j/ld
I0sr0/ld

. s23d

In Eqs. (22) and (23) j=x/H or r / r0, where H is the
half-width of the channel andro is the tube radius;mef=m

+gk / sg+kd; l =Îq1sm+gd /4fsm+gdk+mgg; Io is the modi-
fied Bessel function of zero order; andC is the integration
constant.

Figure 2 presents a comparison of calculated velocity pro-
files with experimental data of Nikuradse[20] and Compte-
Bellot [21]. The calculations correspond toC=0.16, l /H
= l / r0=0.16, and to values ofmef depending on the Reynolds
number. Figure 3 presents the values of logsmef/mmd for dif-
ferent log Re determined from the Nikuradse experiment
(dots) and the approximating curve corresponds tomef/mm

FIG. 2. Velocity profiles calculated for the Poiseuille flows in
tube and channel(continuous curves), compared with experimental
data of Nikuradse[20] and Compte-Bellot[21].
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=0.008 Re0.856. The same figure also shows the dependence
for channel flow, as obtained from the data of Compte-
Bellot. It differs from the previous example in the propor-
tionality constant, which now is 0.014 instead of 0.008.

The solution of Eqs.(18) and (19) for the Couette flow
leads to the velocity distribution, expressed as

u

U
= Cj + Sus1d

U
− CDsinhsHj/jd

sinhsH/ld
. s24d

In Fig. 4, the calculated, according to Eq.(24), velocity pro-
files are compared with experimental data of Reichardt from
[22]. In calculationsl =0,17H, while the values ofus1d /U
and C are determined asus1d /U=0, C=0,29 for Re=2900
andus1d /U=0.4, C=0,21 for Re=3400.

Integration of Eqs.(15) and (19) for the flow between
rotating cylinders results in the following expression for the
velocity field:

u

v1r1
= − C1sr18 + jd + C2

1

r18 + j
+ C3

I1fsr2 − r1dj/lg
I1fsr2 − r1d/lg

− C3
K1fsr2 − r1dj/lg
K1fsr2 − r1d/lg

. s25d

In Eq. (25) v1 denotes the angular rotation velocity of the
inner cylinder,r1 and r2 are the radii of the inner and outer
cylinders,r18=r1/ sr2−r1d, j=sr −r1d / sr2−r1d, I1 is the modi-
fied Bessel function of the first order,K1 is the Hankel func-
tion of the first order, andC1, . . . ,C4 are integration con-
stants. The calculated velocity profile, corresponding toC1
=0.049,C2=15.5,C3=0.17,C4=1.15, is compared in Fig. 5
with data of Zmeikov and Ustremenko[23], realized forr1
=66.6 cm, r2−r1=4.9 cm and for v1=28.3 s−1 and v1
=45.0 s−1 (the outer cylinder is resting).

The solution of Eqs.(18) and(19) for an undulating flow
in a round tube realized under the pressure gradient field

] P

] z
= P0 + P1 cosS t

t
D , s26d

wherePo and P1 are constants, leads to the velocity distri-
bution represented as

usr,td = u0srd + ReFu1srdexpS− i
t

t
DG , s27d

where u0srd is the solution of the case witht−1=0 deter-
mined according to Eq.(23) andu1 expresses as

u1 = u0s0dF− i
P1t

ru0s0d
+ C1

I0slR/jd
I0slRd

+ C1
I0sl*R/jd
I0sl*Rd G .

s28d

If mef=q /J, then forl andl* we have expressions

FIG. 3. The dependence logsmef/mmold=logsRed determined
from data of Nikuradse[20] and Compte-Bellot[21].

FIG. 4. Velocity profiles calculated for Couette flow in plane
channel(continuous curves) compared with experimental data of
Reichardt[22].

FIG. 5. Velocity profile calculated for the flow between rotating
cylinders (continuous curve) compared with experimental data of
Zmeikov and Ustremenko[23].
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l =
1

l
Î1 − i

rl2

sm + gdt
and l* =

1 − i

l*
,

wherel* =Î2meft /r. Assuming that

1 !
r0

l*
and r0Î r

sm + gdt
!

r0

l
,

solution (28) simplifies to the form

u1

u0s0d
= A sin

t

t
+ C18 expSr0

j − 1

l
DsinS t

t
+ w1D

+ C28 expSr0
j − 1

l*
DcosSr0

j − 1

l*
+

t

t
+ w2D ,

s29d
where A=P1t /ru0s0d.

Figure 6 presents velocity profiles calculated according to

Eqs. (23), (27), and (29), for time instants t /t=np /4
+0.02p where n=0,1, . . . ,7 andt=s20pd−1 s. The calcu-
lated profiles are juxtaposed with the data obtained by
Bukreejev and Shakhin[24]. The calculation parameters are
determined asP0/4mefus0d=0.37, C=0.5, A=−C18=0.419,
C28=0.081,w1=w2=0, andl* / r0=0.15.

Besides the presented velocity distributions, the distribu-
tions of many other quantities, such as characteristics of in-
ternal rotation and of the stress and energy, can be calculated.

V. CONCLUDING REMARKS

The only reason for generating a nonzeroM field, defined
by Eq. (1), follows from the eddy structure of the turbulent
medium. Generating a nonzeroM field does not presume any
micromorphic properties of the continuum[10–12] or finite-
ness of the linear scale of differential volume[13]. This as-
sertion is valid for the turbulence treatment formulated in the
present paper as a whole.

The formulated turbulence mechanics essentially widens
the physical background of the turbulence mechanics as well
as enlarges its capacity to describe various effects(like ef-
fects of the so-called “negative viscosity”). It opens the door
for generalization of different models(such aK models,
K-e models, andK-v models) used in a variety of applica-
tions.

The formulated turbulence mechanics offers not only an
additional instrument for discussion of different theoretical
turbulence problems but, as it is shown in Sec. IV, also an
useful tool for practical calculations.
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